The synthesis of mRNA using a strand of DNA as a template.
The nucleotides of the DNA strands are read in groups of three. Each triplet is called acodon. Thus, a codon may be CGA, or TTA, or GCT, or any other combination of the four bases, depending on their sequence in the DNA strand. The mRNA molecule consists of a series of codons received from the genetic message in the DNA.
Once the stop codon has been reached, the mRNA molecule leaves the DNA molecule, and the DNA molecule rewinds to form a double helix. Meanwhile, the mRNA molecule proceeds thorough the cellular cytoplasm toward the ribosomes.
Translation. Translation is the process in which the genetic code will be “translated” to an amino acid sequence in a protein. The process begins with the arrival of the mRNA molecule at the ribosomes. While mRNA was being synthesized, tRNA molecules were uniting with their specific amino acids according to the activity of specific enzymes. The tRNA molecules then began transporting their amino acids to the ribosomes to meet the mRNA molecule.
After it arrives at the ribosomes, the mRNA molecule exposes its bases in sets of three, the codons. Each codon has a complementary codon called an anticodon on a tRNA molecule. When the codon of the mRNA molecule complements the anticodon on a tRNA molecule, the latter places the particular amino acid in that position. Then the next codon of the mRNA is exposed, and the complementary anticodon of a tRNA molecule matches with it. The amino acid carried by the second tRNA molecule is thus positioned next to the first amino acid, and the two are linked. At this point, the tRNA molecules release their amino acids and return to the cytoplasm to link up with new molecules of amino acid.
The ribosome then moves farther down the mRNA molecule and exposes another codon which attracts another tRNA molecule with its anticodon. Another amino acid is brought into position. In this way, amino acids continue to be added to the growing chain until the ribosome has moved down to the end of the mRNA molecule. The sequence of codons on the mRNA molecule thus determines the sequence of amino acids in the protein being constructed (Figure 2 ).
Steps in the synthesis of protein beginning with the genetic code in DNA and ending with the finished polypeptide chain.
Once the protein has been completely synthesized, it is removed from the ribosome for further processing. For example, the protein may be stored in the Golgi body of a eukaryotic cell before release, or a bacterium may release it as a toxin. The mRNA molecule is broken up and the nucleotides are returned to the nucleus. The tRNA molecules return to the cytoplasm to unite with fresh molecules of amino acids, and the ribosome awaits the arrival of a new mRNA molecule.
Gene control. The process of protein synthesis does not occur constantly in the cell, but rather at intervals followed by periods of genetic “silence.” Thus, the process of gene expression is regulated and controlled by the cell.
The control of gene expression can occur at several levels in the cell. For example, genes rarely operate during mitosis. Other levels of gene control can occur at transcription, when certain segments of DNA increase and accelerate the activity of nearby genes. After transcription has taken place, the mRNA molecule can be altered to regulate gene activity. For example, it has been found that eukaryotic mRNA contains many useless bits of RNA that are removed in the production of the final mRNA molecule. These useless bits of nucleic acid are called introns. The remaining pieces of mRNA, called exons, are then spliced to form the final mRNA molecule. Bacterial mRNA lacks introns.
The concept of gene control has been researched thoroughly in bacteria. In these microorganisms, genes have been identified as structural genes, regulator genes, and control regions. The three units form a functional unit called the operon.
The operon has been examined in close detail in certain bacteria. It has been found that certain carbohydrates can induce the presence of the enzymes needed to digest those carbohydrates. For example, when lactose is present, bacteria synthesize the enzymes needed to break it down. Lactose acts as an inducer molecule in the following way: In the absence of lactose, a regulator gene produces a repressor protein, which binds to a control region called the operator site. This binding prevents the structural genes from encoding the enzyme for lactose digestion. When lactose is present, however, it binds to the repressor protein and thereby removes the repressor at the operator site. With the operator site free, the structural genes are released to produce their lactose-digesting enzyme.